Search Engine and PageRank

Wael A. Sultan

Search It's a tutorial describes generally, any search engine concept and how it works and specifically the Google search engine and the concept of page rank algorithm

Block Diagram of any web search

Remember: when you search in any web search engine you not search the internet, you search copy of internet that is pre-stored in that search engine database

Google Search Engine and PageRank

The web is composed of billions of individual Pages, and more links between them. As such, the web can be modeled as a directed graph where pages are nodes, and links are directed edges between them. We suggest a simple case and then generalize the concept.

In this small web containing five pages (A, B, C, D, and E). The directed edges between the nodes indicate that

- the only link from page A leads to page B,
- page B links to pages A and C,
- page C links to pages A, B, and E,
- the only link from page D leads to page A, and
- page E links to pages B, C, and D.

In order to determine the ranking to be accorded to each of these five pages , we consider a simple version of the PageRank algorithm.

Suppose that an impartial web surfer navigates through this web by randomly choosing links to follow. Consider the imperial web surfer starting at page C the following figure represent the probable path and corresponding conditional probabilities.

We can deduce the first step probabilities table as following and we called it the transition matrix P for simple web above

	(A	В	С	D	E	Nodes/Nodes
<i>p</i> =	0	$\frac{1}{2}$	$\frac{1}{3}$	1	0	A
	1	0	$\frac{1}{3}$	0	$\frac{1}{3}$	В
	0	$\frac{1}{2}$	0	0	$\frac{1}{3}$	С
	0	0	0	0	$\frac{1}{3}$	D
	/0	0	$\frac{1}{3}$	0	0	е /

Now and as before, we assume that the web crawler starts at page C. Thus

$$P^{0} = \begin{pmatrix} p(X_{0} = A) \\ p(X_{0} = B) \\ p(X_{0} = C) \\ p(X_{0} = D) \\ p(X_{0} = E) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

The probability vector p^1 after the first step is given by $p^1 = P p^0$, and therefore

$$P^{1} = \begin{pmatrix} p(X_{1} = A) \\ p(X_{1} = B) \\ p(X_{1} = C) \\ p(X_{1} = D) \\ p(X_{1} = E) \end{pmatrix} = p = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ 0 \\ \frac{1}{3} \\ 0 \\ \frac{1}{3} \end{pmatrix}$$

The same method may be followed to calculate the probability vector after any number of steps:

$$p^n = P p^{n-1} = PP p^{n-2} = \dots = P^n p^0$$

We observe that seems to converge to a constant matrix as m increases, in our case:

$$p^{32} = \begin{pmatrix} 0.293 & 0.293 & 0.293 & 0.293 & 0.293 \\ 0.390 & 0.390 & 0.390 & 0.390 & 0.390 \\ 0.220 & 0.220 & 0.220 & 0.220 & 0.220 \\ 0.024 & 0.024 & 0.024 & 0.024 & 0.024 \\ 0.073 & 0.073 & 0.073 & 0.073 & 0.073 \end{pmatrix}$$